

Exploring the Many Perspectives of Distributed Air Traffic Management: The Multi Aircraft Control System MACS

HCI-Aero 2002, Cambridge, MA October 2002

Thomas Prevot

San Jose State University
NASA Ames Research Center
Moffett Field, CA

Acknowledgements

- Creating initial JAVA based pilot stations for our simulation
 - Stephan Romahn
- Collaborators at NASA Ames:
 - Ev Palmer, Nancy Smith, Todd Callantine
- Additional MACS developers
 - Michael Downs, Khan Trinh, Rick Jacoby

Contents

- Background
- One Common Situation Many Perspectives
- MACS Views
- Operator Support and Autonomous Agent Functions
- Situation Awareness Probes
- Simulation Architecture
- MACS Usage in Recent Experiment
- Future Work

Background

- Air traffic management research of future concepts needs to address all players including flight crews, air traffic controllers/ managers and airline dispatchers adequately
- Among the ways of addressing the problem are
 - Include many participants (pilots, controllers, dispatchers) in a given air traffic simulation to work all sides of the problem adequately.
 - Include automated agents for side aspects and human participants only for the focus area of the research.

Distributed Concept (DAG)

Automation:

- CDTI
- Conflict probe
- FMS
- Data link

Automation tools

- Planning
- Scheduling
- Data link

Flight

Deck

Flight Crew Role:

- Assure separation en route
- Plan conflict free flight paths
- Follow FMS flight paths precisely
- Self-merging and spacing

Automation

- Traffic Management
- Conflict probe
- Descent Advisor
- Data link

Airline Operational Control

AOC Role:

- Determine preferences
- Coordinate

Air Traffic Control

Planner Role:

- Generate Schedule
- Assist flight crews and ATC

Controller Role:

- Assure separation in Terminal area
- Adjust flight paths

One Common Situation - Many Perspectives

All Perspectives As MACS Views

MACS Views

- All views can be configured individually by the operator
- Windows can be mixed and matched

MACS Design and Architecture

- Only JAVA code is used
- Tested and used on Windows, UNIX and LINUX platforms with free compilers and virtual machines
- Very robust multi threaded process:
 - each window is updated by it's own thread
 - Most threads can be stopped and restarted and are automatically restarted if a problem is detected
 - All thread update rates can be configured in real-time by the operator and tailored to the particular station use
- Design goals:
 - Simple and intuitive operator interactions
 - Configurable for different levels of automation

MACS capabilities

- Full performance multi aircraft pilot stations:
 - Experienced operators typically handle 8-20 aircraft per station opposite FPL controllers
- Enroute and TRACON "FMS-like" guidance flies aircraft accurately close to the ground
- Event controller "Auto-Mode" enables automatic flight for all aircraft in a simulation
- On-line analysis of aircraft trajectories and crossing restrictions
- Several ATC views (DSR, STARS, Generic) are available and currently completed

Pilot View

MACS Single Pilot Station

ATC view

Generic ATC view

STARS View

DSR ATC View

Analysis View

Experimenter View

Operator Support and Automated Agents

MACS can be configured for automatically performing tasks or prompting operators

Event Control							라 2 전 🗵
<u>File</u>							
✓ AUTO-ARRIVALS				DEFAULT			
Radio Check In	■ (HI	PROMPT OPERATOR	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	Departures	Overflights
	1,	AUTO EXECUTE	Free Flights	ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
Radio Request for Lower	FL?	PROMPT OPERATOR	Free Flights	✓ ATC Controlled	✓ Arrivals	■ Departures	Overflights
		AUTO EXECUTE	Free Flights	ATC Controlled	Arrivals	■ Departures	Overflights
Lower Mcp Altitude	МСР	PROMPT OPERATOR	Free Flights	ATC Controlled	☐ Arrivals	■ Departures	Overflights
		AUTO EXECUTE	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	■ Departures	Overflights
End of Route	END	PROMPT OPERATOR	Free Flights	ATC Controlled	☐ Arrivals	✓ Departures	✓ Overflights
		AUTO EXECUTE	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	■ Departures	Overflights
Free Flight/ATC Transition	FF/ATC	PROMPT OPERATOR	✓ Free Flights	ATC Controlled	✓ Arrivals	■ Departures	Overflights
		AUTO EXECUTE	Free Flights	ATC Controlled	■ Arrivals	■ Departures	Overflights
Entering Controlled Airspace	->CTRL	PROMPT OPERATOR	Free Flights	ATC Controlled	■ Arrivals	■ Departures	Overflights
		AUTO EXECUTE	Free Flights	ATC Controlled	□ Arrivals	■ Departures	Overflights
Heading Probes	>HDG<	PROMPT OPERATOR	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
		AUTO EXECUTE	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
Altitude Probes	>ALT<	PROMPT OPERATOR	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
		AUTO EXECUTE	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
Speed Probes	>SPD<	PROMPT OPERATOR	✓ Free Flights	✓ ATC Controlled	✓ Arrivals	✓ Departures	✓ Overflights
		AUTO EXECUTE	✓ Free Flights	✓ ATC Controlled	∠ Arrivals	☑ Departures	✓ Overflights

Windows can be combined as desired

MACS Windows

Current DAG Simulation Architecture

Ames Research Center

ADRS*- The Distributed Simulation Hub

- *Aeronautical Datalink and RADAR Simulator
- Distribution of communication load:
 - Unlimited number of servers and clients can be connected by adding identical ADRS processes to the simulation network that share their information
- Host emulation
- Radar simulation
- Datalink simulation
- Aircraft state and trajectory data harmonization and maintenance
- Process control and monitoring

MACS usage in current DAG Simulations (Ongoing)

- CTAS/FMS 2002 data collection. Evaluation of trajectory based vs. sector based concepts of managing arrival traffic with FPL controllers and air traffic managers.
 - AOL, MACS, PAS, CTAS
- Frequent workshops, demonstrations and evaluations of distributed concepts that investigate free-flight concepts with airborne and ground-based conflict resolution techniques, new separation responsibilities and airspace restructuring with controllers, pilots, dispatchers and researchers.
 - AOL, ACFS, PC-Plane, MACS, CDTI, PAS, CTAS

Upgrading and Expanding

Concluding remarks

- Realistic human-in-the-loop simulations of future distributed air traffic management will require participation of numerous pilots, controllers, airline dispatchers, researchers and the operational community alike
- The multi-fidelity simulation environment at NASA Ames has been successfully used for many demonstrations and evaluations
- The simulation will be upgraded and expanded to include more research facilities on and off-site as active participants, observers, or data analysts.
- Currently MACS is used for pilot stations and for automatically guiding aircraft. It will aslo replace the controller workstations.

Information on the World Wide Web

http://human-factors.arc.nasa.gov/ihi/research_groups/air-ground-integration

http://human-factors.arc.nasa.gov/ihh/cdti/DAG TM WEB/dag2001.html

http://www.arc.nasa.gov/aatt